Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171368, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438040

RESUMO

Coastal sediments play a central role in regulating the amount of land-derived reactive nitrogen (Nr) entering the ocean, and their importance becomes crucial in vulnerable ecosystems threatened by anthropogenic activities. Sedimentary denitrification has been identified as the main sink of Nr in marine environments, while anaerobic ammonium oxidation with nitrite (anammox) has also been pointed out as a key player in controlling the nitrogen pool in these locations. Collected evidence in the present work indicates that the microbial biota in coastal sediments from Baja California (northwestern Mexico) has the potential to drive anaerobic ammonium oxidation linked to Mn(IV) reduction (manganammox). Unamended sediment showed ammonification, but addition of vernadite (δMnO2 with nano-crystal size ∼15 Å) as terminal electron acceptor fueled simultaneous ammonium oxidation (up to ∼400 µM of ammonium removed) and production of Mn(II) with a ratio ∆[Mn(II)]/∆[NH4+] of 1.8, which is very close to the stoichiometric value of manganammox (1.5). Additional incubations spiked with external ammonium also showed concomitant ammonium oxidation and Mn(II) production, accounting for ∼30 % of the oxidized ammonium. Tracer analysis revealed that the nitrogen loss associated with manganammox was 4.2 ± 0.4 µg 30N2/g-day, which is 17-fold higher than that related to the feammox process (anaerobic ammonium oxidation linked to Fe(III) reduction, 0.24 ± 0.02 µg 30N2/g-day). Taxonomic characterization based on 16S rRNA gene sequencing revealed the existence of several clades belonging to Desulfobacterota as potential microorganisms catalyzing the manganammox process. These findings suggest that manganammox has the potential to be an additional Nr sink in coastal environments, whose contribution to total Nr losses remains to be evaluated.


Assuntos
Compostos de Amônio , Nitrogênio , Nitrogênio/análise , Anaerobiose , Sedimentos Geológicos/química , Compostos Férricos , Ecossistema , RNA Ribossômico 16S/genética , México , Óxidos , Oxirredução , Desnitrificação
2.
Chemosphere ; 349: 140933, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092166

RESUMO

Anaerobic ammonium oxidation, associated with both iron (Feammox) and manganese (Mnammox) reduction, is a microbial nitrogen (N) removal mechanism recently identified in natural ecosystems. Nevertheless, the spatial distributions of these non-canonical Anammox (NC-Anammox) pathways and their environmental drivers in subtidal coastal sediments are still unknown. Here, we determined the potential NC-Anammox rates and abundance of dissimilatory metal-reducing bacteria (Acidomicrobiaceae A6 and Geobacteraceae) at different horizons (0-20 cm at 5 cm intervals) of subtidal coastal sediments using the 15N isotope-tracing technique and molecular analyses. Sediments were collected across three sectors (inlet, transition, and inner) in a coastal lagoon system (Bahia de San Quintin, Mexico) dominated by seagrass meadows. The positive relationship between 30N2 production rates and dissimilatory Fe and Mn reduction provided evidence for Feammox's and Mnammox's co-occurrence. N loss through NC-Anammox was detected in subtidal sediments, with potential rates of 0.07-0.62 µg N g-1 day-1. NC-Anammox process in vegetated sediments tended to be higher than those in adjacent unvegetated ones. NC-Anammox rates showed a subsurface peak (between 5 and 15 cm) in the vegetated sediments but decreased consistently with depth in the adjacent bare bottoms. Thus, the presence/absence of seagrasses and sediment characteristics, particularly the availability of organic carbon and microbiologically reducible Fe(III) and Mn(IV), affected the abundance of dissimilatory metal-reducing bacteria, which mediated NC-Anammox activity and the associated N removal. An annual loss of 32.31 ± 3.57 t N was estimated to be associated with Feammox and Mnammox within the investigated area, accounting for 2.8-4.7% of the gross total import of reactive N from the ocean into the Bahia de San Quintin. Taken as a whole, this study reveals the distribution patterns and controlling factors of the NC-Anammox pathways along a coastal lagoon system. It improves our understanding of the coupling between N and trace metal cycles in coastal environments.


Assuntos
Compostos de Amônio , Compostos Férricos , Compostos Férricos/metabolismo , Ecossistema , Sedimentos Geológicos/microbiologia , Compostos de Amônio/metabolismo , Ciclo do Nitrogênio , Oxirredução , Nitrogênio/metabolismo , Bactérias/metabolismo
3.
Mar Pollut Bull ; 196: 115651, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832497

RESUMO

Marine heatwaves (MHWs) can have detrimental effects on seagrasses, but knowledge about the impacts on their ecosystem services remains scarce. This work evaluated Phyllospadix scouleri (surgrass) as a biofilter for wastewater discharges, and how warming associated with MHW may affect this ecological function. The nitrogen uptake kinetics and assimilation abilities for ammonium, nitrate, and urea were examined under two different warming scenarios (single and repeated events) simulated in a mesocosm. N-uptake kinetics were related to urban sewage discharges close to surfgrass meadows. Our results revealed that surfgrasses can serve as effective biofilters because of their high nitrogen uptake rates and above-average canopy biomass. Nonetheless, exposure to both experimental warmings resulted in a significant decline in their ability to incorporate and assimilate nitrogen. Consequently, MHWs may reduce the capacity of surfgrasses to function as nitrogen sinks and green filters for sewage waters, jeopardizing their role as Blue Nitrogen systems.


Assuntos
Ecossistema , Águas Residuárias , Esgotos , Biomassa , Nitrogênio
4.
Mar Pollut Bull ; 96(1-2): 418-23, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25986653

RESUMO

The Mediterranean Sea is a hotspot for invasive species and projected Mediterranean warming might affect their future spreading. We experimentally examined ecophysiological responses to the temperature range 23-31 °C in three invasive seaweeds commonly found in the Mediterranean: Acrothamnion preissii, Caulerpa cylindracea and Lophocladia lallemandii. The warming range tested encompassed current and projected (for the end of 21st Century) maximum temperatures for the Mediterranean Sea. Optimal ecophysiological temperatures for A. preissii, C. cylindracea and L. lallemandii were 25 °C, 27 °C and 29 °C, respectively. Warming below the optimal temperatures enhanced RGR of all studied invasive seaweeds. Although sensitive, seaweed photosynthetic yield was less temperature-dependent than growth. Our results demonstrate that temperature is a key environmental parameter in regulating the ecophysiological performance of these invasive seaweeds and that Mediterranean warming conditions may affect their invasion trajectory.


Assuntos
Espécies Introduzidas , Alga Marinha/crescimento & desenvolvimento , Alga Marinha/fisiologia , Temperatura , Caulerpa/crescimento & desenvolvimento , Caulerpa/fisiologia , Mudança Climática , Ecossistema , Mar Mediterrâneo , Rodófitas/crescimento & desenvolvimento , Rodófitas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...